ON AMENABLE GROUPS OF AUTOMORPHISMS ON VON NEUMANN ALGEBRAS[†]

BY

EDMOND E. GRANIRER

Department of Mathematics, The University of British Columbia, Vancouver, B.C., Canada

ABSTRACT

Let $G \subset Aut \mathcal{M}$ be a countable group, \mathcal{M} a Von Neumann algebra. Let E be a set of pure states on \mathcal{M} such that $G^*E \subset E$, S^G be the set of G invariant states on \mathcal{M} and $S_E^G = S^G \cap w^*$ cl co E. We investigate in this paper some geometric properties for the set S_E^G which turn out to be equivalent to amenability for the group G. For example, we show that $S_E^G \subset \mathcal{M}_*$ (S_E^G has the WRNP) implies that \mathcal{M} contains minimal projections (\hat{E} contains finite G invariant orbits) hold true, for all \mathcal{M} iff G is amenable. Furthermore we show that if G is amenable then $S^G \cap \mathcal{M}_*$ contains a big set, thus improving results obtained by Ching Chou in [2]. These results imply that no action of an amenable countable group G on an arbitrary W^* algebra \mathcal{M} is S — strongly ergodic. Moreover card $S^G \cap \mathcal{M}_*^1 \geq 2^c$ (see M. Choda [4], K. Schmidt [21] and compare with A. Connes and B. Weiss [5]).

Introduction

Let \mathcal{M} be an infinite-dimensional W^* algebra, \mathcal{M}^* (\mathcal{M}_*) its dual (predual). Let Aut \mathcal{M} be the group of all automorphisms of \mathcal{M} onto \mathcal{M} and $G \subset \operatorname{Aut} \mathcal{M}$ a group. Let $E \subset \mathcal{M}^*$ be a set of pure states (as in [23]) (usually) such that $G^*E \subset E$ (i.e. $g^*E \subset E$ for all g in G, where $\langle g^*\psi, x \rangle = \langle \psi, gx \rangle$ if $\psi \in \mathcal{M}^*$, $x \in \mathcal{M}$).

Denote by S^G the set of all states ψ in \mathcal{M}^* such that $G^*\psi = \psi$ (i.e. $g^*\psi = \psi$ for all g in G). Let $S_E^G = S^G \cap w^*$ cl co E where w^* cl denotes w^* closure and co E the convex hull of E. If $\mathscr{J} \subset \mathscr{M}$, let $\mathscr{J}^0 = \{\psi \in \mathscr{M}^*; \langle \psi, \chi \rangle = 0 \text{ for all } \chi \text{ in } \mathscr{J} \}$.

Received October 27, 1988 and in revised form October 2, 1989

[†] The author gratefully acknowledges the support of an Izaak Walton Killam Memorial Senior Fellowship.

If E is the set of all pure states on \mathcal{M} , then clearly $S_E^G = S^G$, while if $\mathcal{J} = \{0\}$ then $S_E^G \cap \mathcal{J}^0 = S_E^G$.

Our first result is a characterization of amenability for G in terms of minimal projections in \mathcal{M} , namely:

THEOREM 1. Let $G \subset \text{Aut } \mathcal{M}$ be a group, $E \subset \mathcal{M}^*$ a set of pure states such that $G^*E \subset E$ and \mathscr{J} countable. Assume that $\varnothing \neq S_E^G \cap \mathscr{J}^0 \subset \mathscr{M}_*$.

- (a) If G is countable and amenable then $\mathcal M$ contains minimal projections.
- (b) If G is not amenable then the action of G on $\mathcal{M} = L^{\infty}(T^G, \lambda^G)$ is such that $S^G \subset \mathcal{M}_*$, yet \mathcal{M} does not contain minimal projections.

Part (b) of the theorem is an immediate consequence of the following interesting result of Losert and Rindler [15] and, independently, of Rosenblatt [17]: "If G is any nonamenable group, then the ergodic measure preserving action of G on $\mathcal{M} = L^{\infty}(T^G, \lambda^G)$ admits a unique invariant state, i.e. $S^G = \{\lambda^G\}$ ". Here $T^G = \{\Pi \ T_g; g \in G\}$ is the product group of $T_g = T$ (the torus) for each g in G, equipped with its Haar measure λ^G .

The next result is concerned with the "bigness" of the set S^G . Let

$$c_0 = \left\{ b = (b_k) \in l^{\infty}; \lim_k b_k = 0 \right\}$$

and \mathscr{F} be the set of states ψ on l^{∞} such that $\psi = 0$ on c_0 (i.e. $\langle \psi, \delta_n \rangle = 0$ for all n where δ_n is defined as zero at all $k \neq n$ and is one at k = n). Thus $\beta N \sim N \subset \mathscr{F}$ and card $\beta N \sim N = 2^c$, where $c = \operatorname{card} R$ is the cardinality of the continuum. Furthermore $\beta N \sim N$ is a w^* perfect set such that if $\psi_1, \psi_2 \in \beta N \sim N$ and $\psi_1 \neq \psi_2$ then $\| \psi_1 - \psi_2 \| = 2$. In particular \mathscr{F} is as "big" as it can be, since $\operatorname{card}(l^{\infty^*}) = 2^c$.

Denote by $\mathcal{M}^* \sim \mathcal{M}_*$ the set theoretical difference between \mathcal{M}^* and $\mathcal{M}_* \subset \mathcal{M}^*$. We now have

THEOREM 2. Let \mathcal{M} be an infinite-dimensional σ -finite W^* algebra (see [23] p. 78) which contains no minimal projections. Let $G \subset \operatorname{Aut} \mathcal{M}$ be a countable amenable group and E a set of pure states on \mathcal{M} such that $G^*E \subset E$. If for some countable $\mathcal{J} \subset \mathcal{M}$, $S_E^G \cap \mathcal{J}^0 \neq \emptyset$ ($\mathcal{J} = \{0\}$ is such), then $S^G \cap \mathcal{J}^0 \cap (\mathcal{M}^* \sim \mathcal{M}_*)$ contains a w^* and norm isomorphic copy of the big set \mathcal{F} .

If G is not amenable, then the action of G on $\mathcal{M} = L^{\infty}(T^G, \lambda^G)$ is such that $S^G = {\lambda^G}$, thus card $S^G = 1$.

We note that the set $S_E^G \cap (\mathcal{M}^* \sim \mathcal{M}_*)$ need not be big. Even if $G = \{e\}$ is the trivial group, $S_E^G \cap (\mathcal{M}^* \sim \mathcal{M}_*)$ may contain just one element. Nevertheless, by the above theorem $S^G \cap (\mathcal{M}^* \sim \mathcal{M}_*)$ has to be "big". Furthermore

 $S^G \cap \mathcal{J}^0 \cap (\mathcal{M}^* \sim \mathcal{M}_*)$ may contain \mathcal{F} , yet $S^G \cap \mathcal{J}^0 \cap \mathcal{M}_*^{\perp} = \emptyset$ may happen. (\mathcal{M}_*^{\perp}) is the set of singular elements of \mathcal{M}^* as in Takesaki [23] p. 127.)

Why are we interested in $S_E^G \cap \mathcal{J}^0$ where $\mathcal{J} \subset \mathcal{M}$ is countable, instead of only in S_E^G ? It happens that one is interested in a set of states which are G invariant yet are *not* invariant with respect to some maps $h_n: \mathcal{M} \to \mathcal{M}$, $n=1,2,3,\ldots$ (a "symmetry breaking" situation as in [18]). In such a case there exist some $\phi_0 \in S_E^G$, $x_n \in \mathcal{M}$ and scalars α_n , β_n such that $\phi_0(x_0) = \alpha_n$, $\phi_0(h_n x_n) = \beta_n$ for all n. Hence, if we take $\mathcal{J} = \{x_n - \alpha_n I\} \cup \{h_n x_n - \beta_n I\}$, then $\phi_0 \in S_E^G \cap \mathcal{J}^0$. One may then be interested to find out when $S_E^G \cap \mathcal{J}^0$ has the WRNP (see Theorem 3) or when $S_A^G \cap \mathcal{J}^0$ contains \mathcal{F} (as in Theorems 2, 7 and 9).

The following is a result of Ching Chou:

COROLLARY (Ching Chou [2]). Assume that G is a countable amenable group acting ergodically as measure preserving maps on a nonatomic probability space (X, \mathcal{B}, p) . Then there exists a positive w^*-w^* continuous isometry into, $t^*: l^{\infty^*} \to L^{\infty}(X)^*$ such that $t^*\mathcal{F} \subset S^G$.

We improve this result in

THEOREM 7. Let \mathcal{M} be an infinite-dimensional W^* algebra, $G \subset \operatorname{Aut} \mathcal{M}$ a countble amenable group. Then there exists a sequence of σ -finite projections $\{q_n; n \geq 0\}$ such that $q_n \uparrow q_0$ σ -strongly, $gq_0 = q_0$ for all g in G and a positive w^* - w^* continuous isometry into $t^*: l^{\infty^*} \to \mathcal{M}^*$ such that $t^*(\mathcal{F}) \subset S^G \cap \mathcal{M}^{\perp}_* \cap P^0$ where $P = \{q_n; n \geq 1\} \cup \{I - q_0\}$.

The main result of Ching Chou in [2] is the

THEOREM. Let G be a countable group acting ergodically as measure preserving maps on the nonatomic probability space (X, \mathcal{B}, p) . If the set S^G of G invariant states on $\mathcal{M} = L^{\infty}(X, p)$ contains some state $\psi_0 \neq p$ (thus $\psi_0 \notin L^1(X, p)$) then there exists a positive w^*-w^* continuous isometry into $t^*: l^{\infty^*} \to \mathcal{M}^*$ such that $t^*\mathcal{F} \subset S^G$.

We improve Chou's result in

THEOREM 9. Let $G \subset \text{Aut } \mathcal{M}$ be any countable group acting on the σ -finite, infinite-dimensional, W^* algebra \mathcal{M} . Assume that there is some ϕ_0 in S^G which is not normal. Then there is a sequence of projetions $q_n \uparrow I$, σ -strongly, and a positive w^*-w^* continuous isometry $t^*: l^{\infty^*} \to \mathcal{M}^*$ such that $t^*\mathcal{F} \subset S^G \cap \mathcal{M}^{\perp}_* \cap P^0$ where $P = \{q_n\}$.

In Chou's proofs essential use is made of the fact that G preserves the finite measure p, thus p is a finite G invariant faithful trace on $\mathcal{M} = L^{\infty}(X, p)$. In our case \mathcal{M} need not admit even a semifinite faithful trace.

This paper contains results related to the theorem announced on p. 760 of our paper [13].

We bring hereby a short errata to [13]:

On p. 755^{15} replace (X, \mathcal{B}, μ) by $(\mathcal{X}, \mathcal{B}, \mu)$. On p. 755_{19} and 755_{20} replace S by G. On p. 758 footnote to Corollary 2: "Using recent results of N. Ghoussoub, G. Godefroy, B. Maurey and W. Schachermeyer one can replace RNP by WRNP in this corollary. Corollary 4 becomes thus superfluous." On p. 758^{22} replace S_E^G by $S_{E_1}^G$. On p. 760_3 replace "is" by "improves".

Definitions and notations

Throughout this paper \mathcal{M} will denote an arbitrary W^* algebra, $\mathcal{M}^*(\mathcal{M}_*)$ its dual (predual) and $I \in \mathcal{M}$ the identity. Then, as is well known (see Takesaki [23] p. 127), $\mathcal{M}^* = \mathcal{M}_* \oplus \mathcal{M}_*^{\perp}$, an l_1 direct sum, where \mathcal{M}_*^{\perp} denotes the set of singular functionals on \mathcal{M} . $\mathcal{M}^* \sim \mathcal{M}_*$ will denote the set theoretical difference of \mathcal{M}^* and \mathcal{M}_* . A self-adjoint projection in \mathcal{M} will be called a projection. If $\phi \in \mathcal{M}^*$ is positive then $(\pi_{\phi}, H_{\phi}, \xi_{\phi})$ will denote the GNS representation induced by ϕ as in [23] p. 39 Theorem I.9.14. B(H) is the W^* algebra of all bounded operators on the Hilbert space H.

Let $G \subset \text{Aut } \mathcal{M}$ be a group, E a set of pure states on \mathcal{M} (usually) such that $G^*E \subset E$. Let $S_E^G = \{ \psi \in w^* \text{ cl co } E; G^*\psi = \psi \}$ and, if E is the set of all pure states, denote S_E^G by S^G . If $A \subset \mathcal{M}^*$, $w^*G_\delta(A)$ denotes the w^*G_δ points of A. If $A \subset \mathcal{M}^*$ is w^* compact then $x_0 \in w^*G_\delta(A)$, iff for some countable $\mathcal{J} \subset \mathcal{M}$, $\{x_0\} = A \cap \mathcal{J}^0$. Then $x_0 \in w^*G_\delta(A)$ iff the w^* topology restricted to A is first countable at x_0 .

If $L^{\infty} = L^{\infty}(X, \mu)$, $\Delta_{L^{\infty}}$ denotes the set of all multiplicative (i.e. pure) states on L^{∞} . In all the theorems where the isometry (isomorphism) $t^*: l^{\infty^*} \to \mathcal{M}^*$ appears, t^* is the adjoint of an onto positive operator $t: \mathcal{M} \to l^{\infty}$ as defined in the proof of Theorem 5 or in Theorem 1.4 of [12].

A convex set K of a Banach space X has the (WRNP) RNP if, for any finite measure space (\mathcal{X}, B, μ) , any countably additive μ -continuous map $m: B \to X$ such that $\mu(A)^{-1}m(A) \in K$ if $\mu(A) \neq 0$ is represented by a Bochner (Pettis) integrable function. For very interesting geometric properties of RNP (WRNP) sets see Stegall [22] (E. Saab [19]). δ_n will always denote the sequence $\delta_n = \{\delta_k^n\}$ where $\delta_k^n = 0$ if $k \neq n$ and $\delta_n^n = 1$.

The term " σ -finite" for a W^* algebra (projection) is the same as "countably decomposable" in Kadison-Ringrose [14]. If $K \subset \mathcal{M}^*$, w^* seq cl K denotes the w^* sequential closure of K.

I. Amenability, minimal projections and WRNP

THEOREM 1. Let $G \subset \text{Aut } \mathcal{M}$ be a countable group, E a set of pure states on the W^* algebra \mathcal{M} such that $G^*E \subset E$ and $J \in \mathcal{M}$ is countable. If G is amenable and if $\emptyset \neq S_E^G \cap J^0 \subset \mathcal{M}_*$, then \mathcal{M} contains minimal projections.

If G is not amenable, then the action of G on $L^{\infty}(T^G, \lambda^G)$ with $E = \Delta_{L^{\infty}}$ and $\mathcal{J} = \{0\}$ satisfies $S^G \cap \mathcal{J}^0 = \{\lambda^G\} \subset \mathcal{M}_*$ yet \mathcal{M} contains no minimal projections.

PROOF. Assume that $S_E^G \cap \mathcal{J}^0 \subset \mathcal{M}_*$. Then $S_E^G \cap \mathcal{J}^0$ is a weakly, i.e. $\sigma(\mathcal{M}_*, \mathcal{M})$ compact set (since it is w^* compact in \mathcal{M}^*). In particular $S_E^G \cap \mathcal{J}^0$ has the RNP (by Stegall [22] p. 508). Hence in any case $S_E^G \cap \mathcal{J}^0$ is a w^* compact convex RNP set and as such it has some w^*G_δ point ϕ_0 (by [22]; for an alternate proof see [11] p. 116). Applying our Corollary 1(a) of [13] we get that there is a countable subset $E_0 \subset E$ such that

(*)
$$\pi_{\psi} \leq \pi_{\phi_0} \leq \{ \bigoplus \pi_{\phi}; \phi \in E_0 \}$$
 for each $\psi \in E_0$.

However $(\pi_{\phi_0}, H_{\phi_0}, \xi_{\phi_0})$ is a normal morphism of \mathcal{M} (since ϕ_0 is normal); see Pedersen [16] 3.3.9. Hence $\pi_{\phi_0}(\mathcal{M})$ is a W^* algebra, by [16] 2.5.3, and $\pi_{\phi_0}(\mathcal{M})$ is isomorphic to $\mathcal{M}q$ for some projection $q \in \mathcal{M} \cap \mathcal{M}'$, by [16] 2.5.5. If now $\psi \in E_0$, then by (*)

$$\psi(x) = \langle \pi_{\psi}(x)\xi_{\psi}, \xi_{\psi} \rangle = \langle \pi_{\phi_0}(x)\xi_1, \xi_1 \rangle, \quad \text{for some } \xi_1 \in H_{\phi_0}.$$

Since π_{φ_0} is normal, it follows that ψ is normal. Hence $\pi_{\psi}(\mathcal{M})$ is also a \mathcal{M}^* algebra. However, the \mathcal{W}^* algebra generated by the C^* algebra $\pi_{\psi}(\mathcal{M})$ is $B(H_{\psi})$ since π_{ψ} is irreducible. Hence $\pi_{\psi}(\mathcal{M}) = B(H_{\psi})$ and, as above, $\pi_{\psi}(\mathcal{M})$ is isomorphic to a \mathcal{W}^* subalgebra $\mathcal{M}q_1$ of \mathcal{M} . Since $B(H_{\psi})$ contains minimal projections, so does \mathcal{M} . This proves the first part. For the second part, we only need to note that (T^G, λ^G) contains no atoms hence \mathcal{M} has no minimal projections (see Introduction).

Theorem 2. Let \mathcal{M} be a σ -finite W^* algebra and contain no minimal projections, $G \subset \operatorname{Aut} \mathcal{M}$ be countable amenable, E a set of pure states such $G^*E \subset E$. Then for every w^*G_{δ} set $U \subset \mathcal{M}^*$ such that $U \cap S_E^G \neq \emptyset$ (or any $U = \mathcal{J}^0$ for some countable $\mathcal{J} \subset \mathcal{M}$ with $S_E^G \cap U \neq \emptyset$) satisfies

 $S_E^G \cap U \cap \{\mathcal{M}^* \sim \mathcal{M}_*\} \neq \emptyset$ and furthermore $S^G \cap U \cap \{\mathcal{M}^* \sim \mathcal{M}_*\}$ contains a w^* and norm isomorphic copy of the big set \mathcal{F} (see end of proof).

If G is not amenable, the action of G on $L^{\infty}(T^G, \lambda^G)$ satisfies for $E = \Delta_{L^{\infty}}$, $\mathcal{J} = \{0\}, S_E^G \cap \mathcal{J}^0 = S^G = \{\lambda^G\} \subset \mathcal{M}_*$.

REMARK. The set $S_E^G \cap \mathcal{J}^0 \cap \{\mathcal{M}^* \sim \mathcal{M}_*\}$ need not be big. It may contain just one element. For example, if $G = \{e\}$ is the trivial group acting on $\mathcal{M} = L^\infty[0, 1]$ and if E contains only one pure (i.e. multiplicative) state $\{\phi_0\}$ and $\mathcal{J} = \{0\}$, then $S_E^G \cap \mathcal{J}^0 \cap \{\mathcal{M}^* \sim \mathcal{M}_*\} = \{\phi_0\}$. However $S^G \cap \mathcal{J}^0 \cap \{\mathcal{M}^* \sim \mathcal{M}_*\}$ is big.

PROOF. Let $\phi_1 \in U \cap S_E^G$, then there are w^* open sets U_n such that $\phi_1 \in \bigcap_{n=1}^{\infty} U_n \cap S_E^G = U$. For each n there is a w^* neighbourhood

$$V_n = \{\phi; |(\phi - \phi_1)(x_k^n)| < \varepsilon_n, 1 \le k \le k_n\}$$

such that $V_n \cap S_E^G \subset U_n \cap S_E^G$ where $x_k^n \in \mathcal{M}$. Let $\alpha_k^n = \phi_1(x_k^n)$. Then $V_n^0 = \{\phi \in \mathcal{M}^*; \phi(x_k^n) = \alpha_k^n, k \leq k_n\}$ satisfies $\phi_1 \in V_n^0 \cap S_E^G \subset V_n \cap S_E^G$. Let $\mathcal{J} = \{x_k^n - \alpha_k^n I; k, n \geq 1\}$. Then

$$\phi_1 \in S_E^G \cap \mathscr{J}^0 = \bigcap_n V_n^0 \cap S_E^G \subset U \cap S_E^G.$$

Our Theorem 1 implies that $S_E^G \cap \mathcal{J}^0 \cap \{\mathcal{M}^* \sim \mathcal{M}_*\} \neq \emptyset$. (If $U = \mathcal{J}^0$ then clearly $S_E^G \cap \mathcal{J}^0 \cap \{\mathcal{M}^* \sim \mathcal{M}_*\} \neq \emptyset$.) Let now

$$\phi_0 \in S_E^G \cap \mathcal{J}^0 \cap \{\mathcal{M}^* \sim \mathcal{M}_*\} \subset S_E^G \cap U \cap \{\mathcal{M}^* \sim \mathcal{M}_*\}.$$

Since \mathcal{M} is σ -finite and ϕ_0 is not normal there exists a sequence of pairwise disjoint projections p_n in \mathcal{M} such that $d = \phi_0(\Sigma_1^\infty p_n) > \Sigma_1^\infty \phi_0(p_n)$ (see [23] p. 136 Cor. 3.11). Let $d_n = \phi_0(p_n)$ and S_N be the set of normal states on \mathcal{M} . Let $\mathscr{J}_1 = \mathscr{J} \cup \{p_n - d_n I; n \geq 1\}$ and denote $A = w^* \operatorname{cl} S_N \cap S^G \cap \mathscr{J}_1^0$. Clearly $\phi_0 \in A$ and $A \cap w^*$ seq $\operatorname{cl} S_N = \emptyset$. This holds since $w^* \operatorname{seq} \operatorname{cl} S_N = S_N$ ([23] p. 148) and any $\phi \in S_N$ satisfies $\phi(\Sigma_1^\infty p_n) = \Sigma_1^\infty \phi(p_n)$. But then our Theorem 1.4 of [12] p. 158 (see also p. 171) implies that there exists a $w^* - w^*$ continuous norm isomorphism into $t^* : l^\infty \to \mathscr{M}^*$ such that $l^* \mathscr{F} \subset A$. Thus there is a $\delta > 0$ such that $l^* \mathscr{F} = l^* \otimes l^$

REMARK. Let \mathscr{J} be countable be such that $S_E^G \cap \mathscr{J}^0 \neq \varnothing$. Then our Theorem 2 only insures that $S_E^G \cap \mathscr{J}^0 \cap \{\mathscr{M}^* \sim \mathscr{M}_*\} \neq \varnothing$. It may though happen that $S^G \cap \mathscr{J}^0 \cap \mathscr{M}_*^\perp = \varnothing$ and a fortiori $S_E^G \cap \mathscr{J}^0 \cap \mathscr{M}_*^\perp = \varnothing$. In fact let

 $\mathcal{M} = l^{\infty}$, $G = \{e\}$ be the trivial group. Let $\phi_1 \in (l^{\infty})_* = l^1$ and $\phi_2 \in (l^{\infty})_*^{\perp}$ be states on \mathcal{M} . Let $\phi_0 = \frac{1}{2}(\phi_1 + \phi_2)$ and $\alpha_n = \phi_0(\delta_n)$. Let $\mathcal{J} = \{\delta_n - \alpha_n I; n \ge 1\}$. If E is the set of all pure states, then $S_E^G = S^G$ and $\phi_0 \in S^G \cap \mathcal{J}^0 \cap \{\mathcal{M}^* \sim \mathcal{M}_*\}$. Yet $S^G \cap \mathcal{J}^0 \cap \mathcal{M}_*^{\perp} = \emptyset$. Since any ϕ in this last set satisfies $\phi(\delta_n) = \alpha_n = \frac{1}{2}\phi_1(\delta_n)$ and $\Sigma_n \phi_1(\delta_n) = 1$ since $\phi_1 \in l^1$ is a state. Thus $\phi \notin (l^{\infty})_*^{\perp} = \{\psi \in l^{\infty}^*; \psi = 0 \text{ on } c_0\}$.

We will need in what follows the following important result of Ghoussoub, Godefroy, Maurey, Schachermeyer, Haagerup [8].

LEMMA GGMSH. Let D be a w^* compact convex subset of the dual of a C^* algebra (or of the dual of a Banach lattice not containing c_0). Then D has the RNP if and only if it has the WRNP.

PROOF. By Cor. VII. 5, p. 93 of [8], D has the RNP iff it has the W^* RNP since $D \subset A^*$, which is the predual of A^{**} . But by [8] p. 80, just preceding Theorem VI. 12, WRNP and W^* RNP coincide for w^* compact convex subsets of duals of Banach spaces.

REMARK. If $G \subset \text{Aut } \mathcal{M}$ is a group and E a set of pure states on \mathcal{M} , let $\hat{E} = \{\pi_{\phi}; \phi \in E\}/\sim \text{ where } \pi_{\phi} \text{ is the GNS representation induced by } \phi \text{ and } \sim \text{ denotes unitary equivalence. Then } \hat{g}\hat{E} = \hat{E} \text{ means that } \{\pi_{\phi}; \phi \in E\}/\sim = \{\pi_{\phi} \circ g; \phi \in E\}/\sim \text{ as in [13] p. 755.}$

We have now the following improvement of our Corollary 2 [13] p. 758:

- THEOREM 3. Let $G \subset \text{Aut } \mathcal{M}$ be a group and E a set of pure states on \mathcal{M} . Assume that for some countable $\mathcal{J} \subset \mathcal{M}$, $S_E^G \cap \mathcal{J}^0 \neq \emptyset$ and has the WRNP.
- (a) If G is countable and amenable, then every subset $E_1 \subset w^*$ cl E such that $G^*E_1 \subset E_1$ and $S_{E_1}^G \cap \mathscr{J}^0 \neq \emptyset$ contains a finite subset $E_0 \subset E_1$ such that $\hat{g}\hat{E}_0 = \hat{E}_0$ for all $g \in G$.
- (b) If G is not amenable, then the action of G on $L^{\infty}(T^G, \lambda^G)$ is such that if $E = \Delta_{L^{\infty}}$, $\mathcal{J} = \{0\}$ then $S_E^G \cap \mathcal{J}^0 = S^G = \{\lambda^G\}$ (which is finite-dimensional a fortiori) has the WRNP, yet for each $\phi \in E$, $G^*\phi$ is infinite.
- PROOF. Lemma GGMSH implies that $S_E^G \cap \mathscr{J}^0$ has in fact the RNP. The proof is then reduced to that of Cor. 2 on p. 758 of [13].

[†] Many thanks are due to N. Ghoussoub for providing us with a preprint of [8].

REMARK. This theorem implies that RNP can be replaced by WRNP in our Cor. 2 and Cor. 3 on p. 758 of [13] and makes Cor. 4 of [13] superfluous. Furthermore, Lemma GGMSH shows that RNP can be replaced by WRNP in our Theorem 4 of [11] and makes Proposition 5 of [11] superfluous.

II. "Bigness" properties of $S^G \cap \mathcal{M}^1_*$

The main results of this section are Theorems 7 and 9.

LEMMA 4. Let $\mathcal{M} \subset B(H)$ be an infinite-dimensional W^* algebra and $G \subset \operatorname{Aut} \mathcal{M}$ countable and amenable. Then there exist σ -finite projections q_n , $n = 0, 1, 2, \ldots$ in \mathcal{M} and $\psi_0 \in S^G \cap \mathcal{M}^{\perp}_*$ such that: $gq_0 = q_0$ for all g in G, $q_n \uparrow q_0$ σ -strongly, $\psi_0(q_0) = 1$ and $\psi_0(q_n) = 0$ if $n \ge 1$.

PROOF. If \mathcal{M} is not σ -finite, there is an infinite sequence $\{h_n\}$ such that $[\mathcal{M}'h_k] \perp [\mathcal{M}'h_i]$ if $k \neq j$, n = 1, 2, 3, ... where \mathcal{M}' is the commutant of \mathcal{M} and $[\mathcal{M}'K]$ is the closed linear span of $\{mh; m \in \mathcal{M}', h \in K\}$ (see [23] p. 78). Let $H_0 = \{h_n\}_1^{\infty}$ and $p_0 \in \mathcal{M}$ the projection onto $[\mathcal{M}'H_0]$. Then $p_0 \mathcal{M} p_0$ acting on $p_0H = [\mathcal{M}'H_0]$ is σ -finite, since the countable set H_0 is separating for $p_0\mathcal{M}p_0$ and by [23] p. 78 (3.19). Thus p_0 is a σ -finite projection by definition. Note that if $p_n \in \mathcal{M}$ is the projection onto $[\mathcal{M}'h_n]$ then $p_0 \ge p_n$ and $p_k p_i = 0$ if $i \ne j$, $i, j \ge 1$. Thus $\{p_n\}_1^{\infty} \subset p_0 \mathcal{M} p_0$ and $p_0 \mathcal{M} p_0$ is infinite dimensional. Now for each $g \in G$, $gp_0 \mathcal{M} gp_0 = g(p_0 \mathcal{M} p_0)$ is also a σ -finite since $g \in Aut \mathcal{M}$. But, since G is countable, $q_0 = \sup\{gp_0; g \in G\}$ (denoted by $\{ \lor gp_0; g \in G \}$ in [23] p. 290) is also a σ -finite projection in \mathcal{M} (see [14] p. 380, ex. 5.7.45) which in addition is such that $gq_0 = q_0$ (since clearly $g_0q_0 = \sup\{g_0gp_0; g \in G\} =$ $\sup\{gp_0; g \in G\} = q_0$). It follows that $q_0 \mathcal{M} q_0$ is a σ -finite W^* algebra acting on q_0H which is infinite dimensional, since $q_0\mathcal{M}q_0\supset g(p_0\mathcal{M}p_0)$ is infinite dimensional for each $g \in G$. Clearly $g(q_0 \mathcal{M} q_0) = q_0 \mathcal{M} q_0$ for all $g \in G$. Now if \mathcal{N} is a W^* algebra such that dim $\mathcal{N} = \infty$, then $\mathcal{N}^* = \mathcal{N}_* \oplus \mathcal{N}_*^{\perp}$ by [23] p. 127 and furthermore $\mathcal{N}_{*}^{\perp} \neq \{0\}$. If $\mathcal{N}_{*}^{\perp} = \{0\}$ then $\mathcal{N}^{*} = \mathcal{N}_{*}$ and \mathcal{N} would be a reflexive W* algebra and hence by S. Sakai's result in [20] would be finite dimensional. Let now ϕ be a singular ([23] p. 127) state on $\mathcal{N} = q_0 \mathcal{M} q_0$ acting on q_0H . If \mathcal{M} is σ -finite take $q_0=I$ and $\mathcal{N}=\mathcal{M}$. G acts on $q_0\mathcal{M}q_0$. Hence $G^* = \{g^*; g \in G\}$ acts on $(q_0 \mathcal{M} q_0)^*$. By the Markov-Kakutani-Day fixed point theorem there is some $\psi \in w^* \operatorname{cl} \operatorname{co} \{G^* \phi\}$ such that $G^* \psi = \psi$. But each $g^*\phi$ is clearly a singular state on $q_0\mathcal{M}q_0$, for example by Theorem 3.8 on p. 134 of [23], and ψ is in the w^* closure of a countable subset of co $G^*\phi$ (all of whose elements are singular) since G^* is countable. Using now Prop. 5.8 on p. 154 of [23] we get that ψ is a singular G^* invariant state on the σ -finite W^* algebra $q_0 \mathcal{M} q_0$. Thus there is a net of projections $q_\alpha \uparrow q_0$, the identity of $q_0 \mathcal{M} q_0$ being such that $\psi(q_\alpha) = 0$; see [23] p. 154.

Let (by Takesaki [23] p. 78) w be a faithful normal positive state in $(q_0 \mathcal{M} q_0)_*$. Then $w(q_0 - q_\alpha) \to 0$. Choose q_{α_1} such that $w(q_0 - q_{\alpha_1}) < 1$ and if q_{α_n} was chosen let $q_{\alpha_{n+1}} \ge q_{\alpha_n}$ be such that $w(q_0 - q_{\alpha_{n+1}}) < 1/n + 1$. If $q_n = q_{\alpha_n}$ then $q_n \uparrow q_0$ ultrastrongly, q_n are σ -finite and $\psi(q_n) = 0$ if $n \ge 1$ while $\psi(q_0) = 1$.

Let now $\psi_0 \in \mathcal{M}^*$ be defined by $\psi_0(m) = \psi(q_0 m q_0)$. Then $g^*\psi_0(m) = \psi(q_0 g m q_0) = \psi(q_0 m q_0) = \psi_0(m)$ and also $\psi_0(m) = \psi(m)$ if $m \in q_0 \mathcal{M} q_0$. Thus ψ_0 is a G^* invariant extension of ψ , which satisfies $\psi_0(q_n) = 0$ and $\psi_0(1 - q_0) = 0$; thus $\psi_0(q_0) = 1 = \psi_0(I)$. Hence $\psi_0 \in \mathcal{M}^{\perp}_* \cap S^G$ as required. (If $\psi_0 = \psi_0^s + \psi_0^s$ with $\psi_0^s(\psi_0^n)$ the singular (normal) part of ψ_0 then $\psi_0((I - q_0) + q_k) = 0$ implies $\psi_0^n(I - q_0 + q_k) = 0$. Hence $\psi_0^n(I) = 0$, i.e. $\psi_0 = \psi_0^s$.)

The following theorem is an improvement of Theorem 3.8 of Ching Chou [1] which in turn improves our Theorem 1, p. 117 of [10]. The main idea of the construction of the w^*-w^* continuous isometry $t^*: l^{\infty^*} \to \mathcal{M}^*$ is due to Ching Chou [1]. The first and last parts of the proof necessarily differ from Chou's proof.

THEOREM 5. Let \mathcal{M} be an infinite-dimensional W^* algebra, $g_n: \mathcal{M}_* \to \mathcal{M}_*$ a sequence of bounded operators and $\mathcal{J} \subset \mathcal{M}$ countable. Let K be a convex set of normal states and $A = \{w^* \operatorname{cl} K\} \cap \{\phi \in \mathcal{M}^*; \ g_n^{**}\phi = 0, \ \forall n \geq 1\} \cap \mathcal{J}^0$. If $\emptyset \neq A \subset \mathcal{M}_*^{\perp}$ then there exists a w^*-w^* continuous positive isometry into $t^*: l^{\infty^*} \to \mathcal{M}^*$ such that $t^*\mathcal{F} \subset A$.

REMARKS. The key word in the above theorem is "isometry". Were we content to only have t^* to be a w^*-w^* positive norm isomorphism into (i.e. such that $c_1 \parallel y \parallel \leq \parallel t^*y \parallel \leq c_2 \parallel y \parallel$, for some $c_2 > c_1 > 0$, for all y) we could have used our Theorem 1.4 in [12] p. 158 as done in Theorem 2.6, p. 171 of [12]. (We note that $A \subset \mathcal{M}_{*}^{\perp}$ implies that $A \subset w^* \operatorname{cl} K \sim w^* \operatorname{seq} \operatorname{cl} K$, since $w^* \operatorname{seq} \operatorname{cl} K \subset \mathcal{M}_{*}$, by [23] p. 148).

PROOF. Let $\phi_0 \in A \subset \mathcal{M}_{*}^{\perp}$. Then for any normal state ϕ one has $\|\phi - \phi_0\| = 2$. Indeed, if Z_0 is the central projection in \mathcal{M}^{**} for which $\mathcal{M}_{*} = \mathcal{M}^{*}Z_0$ (see [23] p. 126) then $\phi Z_0 = \phi$ and $\phi_0 Z_0 = 0$. Thus

$$\| \phi - \phi_0 \| = \| (\phi - \phi_0) Z_0 \| + \| (\phi - \phi_0) (1 - Z_0) \|$$

$$= \| \phi Z_0 \| + \| \phi_0 (1 - Z_0) \| = 2$$

by [23] Theorem 2.4, p. 127. If now ϕ_{α} is any net in K such that $\phi_{\alpha} \rightarrow \phi_0$ in w^* then $\lim_{\alpha} \|\phi_{\alpha} - \phi\| = 2$ for any normal state ϕ since $\lim_{\alpha} \|\phi_{\alpha} - \phi\| \ge 1$ $\|\phi_0 - \phi\| = 2$. The above replaces the need for Lemma 3.1 of Ching Chou [1] p. 214. Let now ψ_{α} a net in K be such that $\psi_{\alpha} \to \phi_0$ in w^* . Then $w^* \lim_{\alpha} g_n^{**} \psi_{\alpha} =$ $g_n^{**}\phi_0 = 0$ and $\langle x, \psi_\alpha \rangle \to 0$ for all x in \mathscr{J} . Using now our extension of an argument of Namioka [9] p. 18 (as in [12] or [1]) there is a net ϕ_{α} of convex combinations of $\{\psi_{\alpha}\}$ such that $\phi_{\alpha} \to \phi_0$ in w^* , $\|g_n \phi_{\alpha}\| \to 0 \ \forall n \text{ and } \langle x, \phi_{\alpha} \rangle \to 0$ for all x in \mathcal{J} . As above $\|\phi_{\alpha} - \phi\| \rightarrow 2$ for all normal states ϕ . Write $\mathcal{J} = \{x_n; n = 1, 2, \ldots\}$. Choose now a sequence ϕ_{α_n} such that $\|g_i\phi_{\alpha_n}\| < 1/n$ and $|\langle x_i, \phi_{\alpha_n} \rangle| < 1/n$ for all $1 \le i \le n$ and denote ϕ_{α_n} by ϕ_n . Now as in [12] p. 154 any w^* limit ψ of a subnet $\{\phi_{n_s}\}$ of the sequence ϕ_n ncessarily satisfies $g_n^{**}\psi = 0$ and $\langle \psi, x_n \rangle = 0 \ \forall n \ge 1$ and hence $\psi \in A$. But $A \subset \mathcal{M}_*^{\perp}$ by assumption. Thus $\|\psi - \phi\| = 2$ for any normal state ϕ and the same reasoning as above shows that $\|\phi_n - \phi\| \rightarrow 2$ for any normal state ϕ . We can apply now Ching Chou's powerful Theorem 2.4 on p. 212 of [1] and get that there is a subsequence ϕ_{n_i} of ϕ_n and normal states of ψ_j such that $\|\phi_{n_j} - \psi_j\| \le 1/j$ and the ψ_j are mutually orthogonal, i.e. the support projections $p_j \in \mathcal{M}$ of ψ_i (see [23] p. 134) satisfy $p_i p_k = 0 = p_k p_j$ if $j \neq k$. Thus $\{\psi_j\}$ form a canonical l_1 basis in \mathcal{M}_{\star} , i.e. any linear combination of ψ_i satisfies $\| \Sigma_1^k \alpha_i \psi_i \| = \Sigma_1^k |\alpha_i|$. In fact if $x = \sum_{i=1}^{k} (\bar{\alpha}_i / |\alpha_i|) p_i$ then ||x|| = 1 and $\langle \sum_{i=1}^{k} \alpha_i \psi_i, x \rangle = \sum_{i=1}^{k} |\alpha_i|$. It is now readily checked that $||g_n\psi_i|| \to 0$ and $\langle x_n, \psi_i \rangle \to 0$ for each fixed n. Furthermore the operator $i: l_1 \to \mathcal{M}_*$ given by $i: \{\alpha_i\} \to \sum_{1}^{\infty} \alpha_i \psi_i$ is an *into* isometry, i.e. $\|i\{\alpha_i\}_1^{\infty}\| = \sum_{i=1}^{\infty} |\alpha_i|$. Also $i\delta_k = \psi_k$, and $i \ge 0$, i.e. if $\alpha_i \ge 0$ for all j then $i\{\alpha_i\} \ge 0$ in \mathcal{M}_{\star} . But then if $b = \{b_n\} \in l^{\infty}$, define $\hat{b} \in \mathcal{M}$ to be any norm preserving extension of the linear functional $\hat{b_0}$ on $i(l^1)$ given by: $\langle \hat{b_0}, \Sigma_1^{\infty} \alpha_i \psi_i \rangle = \Sigma_1^{\infty} b_i \alpha_i$. Note that $\| \hat{b_0} \| = \| \hat{b_0} \| = \sup_n |b_n| = \| b \|$.

Thus $i * \hat{b} = b$ and $||\hat{b}|| = ||b||$. But then since $||i * || \le 1$, $||i * * \phi|| = ||\phi||$ for any $\phi \in l^{\infty}$ and $i * * : l^{\infty} \to \mathcal{M}^*$ is an isometry into, which is positive since so is $i : l^1 \to \mathcal{M}_*$.

We show now that $i^{**}\theta \in A$ if $\theta \in \mathscr{F}$. Clearly $i\delta_k = \psi_k$ and if $x \in \mathscr{M}$ then for fixed n we have $\langle i^{**}g_n^*x, \delta_k \rangle = \langle x, g_n\psi_k \rangle \to 0$ if $k \to \infty$ and also $\langle i^*x_n, \delta_k \rangle = \langle x_n, \psi_k \rangle \to 0$ if $k \to \infty$.

Hence for all n, $i*g_n^*(\mathcal{M}) \subset c_0$ and $i*\mathcal{F} \subset c_0$. Let now $\theta \in \mathcal{F}$ be fixed. Then $\theta = 0$ on c_0 . Hence

$$\langle g_n^{**}i^{**}\theta, x \rangle = \langle \theta, i^*g_n^*x \rangle = 0$$
 and $\langle i^{**}\theta, x_n \rangle = \langle \theta, i^*x_n \rangle = 0$.

We still have to show that $i^{**}\theta \in w^* \text{ cl } K$ to finish the proof. Here again we differ from Ching Chou's proof [1] p. 217.

Since $\langle \theta, \delta_k \rangle = 0$ for all k we have for all $j \ge 1$ that $\theta \in w^*$ cl $\operatorname{co}\{\delta_k; k \ge j\}$ thus $i^{**}\theta \in w^*$ cl $\operatorname{co}\{\psi_k; k \ge j\}$. We note that if j is fixed then $\|\phi_{n_k} - \psi_k\| \le 1/j$, if $k \ge j$. Hence if $\mu = \sum_{k=0}^{l} \alpha_k \psi_{k+j} \in \operatorname{co}\{\psi_n; n \ge j\}$ then $\mu' = \sum_{k=0}^{l} \alpha_k \phi_{n_{k+j}} \in K$ will satisfy $\|\mu - \mu'\| \le 1/j$.

For every finite set $F \subset \mathcal{M}$ and $n \ge 1$, $j \ge 1$ there is some $v \in \operatorname{co}\{\delta_k; k \ge j\}$ such that $|\langle i^{***}(v - \theta), x \rangle| < 1/n$ for all x in F. Let D be the directed set $\{\beta = (F, j, n), F \subset \mathcal{M} \text{ finite, } n, j \ge 1\}$ with $(F', j', n') \ge (F, j, n)$ iff $F \subset F', n' \ge n$ and $j' \ge j$. Then it is readily seen that there is a net on D, $\{v_\beta; \beta \in D\} \subset \operatorname{co}\{\delta_k; k \ge 1\}$ such that if $\beta = (F, j, n)$ then $v_\beta \in \operatorname{co}\{\delta_k; k \ge j\}$ and $|\langle i^{**}(v_\beta - \theta), x \rangle| < 1/n$ if $x \in F$ and such that $v_\beta \to \theta$ in w^* .

But then let $\mu_{\beta} = i^{**}\nu_{\beta}$ and μ'_{β} be the net containing $\phi_{\eta_{j}}$ at each place where ψ_{j} appears in $i^{**}\nu_{\beta} = \mu_{\beta}$. Then $\mu'_{\beta} \in K$ and $\|\mu_{\beta} - \mu'_{\beta}\| \le 1/j$ if $\beta \ge \beta_{0} = \{F_{0}, k, j\}$ for any k and finite $F_{0} \subset \mathcal{M}$.

Let now $\varepsilon > 0$ and $F_0 \subset \mathcal{M}$ be finite. Let $\beta_0 = (F_0, k_0, j_0)$ be such that $|\langle i^{**}(v_\beta - \theta), x \rangle| < 1/j_0 < \varepsilon/2$, $\forall x \in F_0$ if $\beta \ge \beta_0$ and furthermore $||x|| / j_0 < \varepsilon/2$ $\forall x \in F_0$. Then $\forall x \in F_0$

$$|\langle \mu_{\beta}' - i^{**\theta}, x \rangle| \leq |\langle \mu_{\beta}' - \mu_{\beta}, x \rangle| + |\langle i^{**}(v_{\beta} - \theta), x \rangle|$$
$$< (||x||/j_0) + \varepsilon/2 < \varepsilon.$$

This shows that $i^{**}\theta \in w^* \operatorname{cl} K$. Thus $i^{**}\mathscr{F} \subset A$. Denote $t = i^*$.

COROLLARY 6. Assumptions as in Theorem 5 except that $\emptyset \neq A \subset \mathcal{M}_{*}^{\perp}$ is replaced by $A \cap \mathcal{M}_{*}^{\perp} \neq \emptyset$ and \mathcal{M} is σ -finite. Then there exists a w^*-w^* continuous positive isometry into $t^*: l^{\infty^*} \to \mathcal{M}^*$ such that $t^*\mathcal{F} \subset A \cap \mathcal{M}_{*}^{\perp}$.

PROOF. Let $\phi_0 \in A \cap \mathcal{M}_{*}^{\perp}$ and choose a sequence of projections $p_n \uparrow I$, ultrastrongly in \mathcal{M} , such that $\phi_0(p_n) = 0$ for all n (see Takesaki [23] p. 154 and Theorem 3.8 p. 134). Let $\mathcal{J}_1 = \mathcal{J} \cup \{p_n\}$. Then:

$$A_1 = \{ w^* \operatorname{cl} K \} \cap \{ \phi \in \mathcal{M}^*; g_n^{**} \phi = 0 \ \forall n \ge 1 \} \cap \mathcal{J}_1^0 \subset \mathcal{M}_*^\perp \text{ and } \phi_0 \in A_1.$$

This is the case since if $\phi \in A_1$ and $\phi = \phi^n + \phi^s$ with ϕ^n (ϕ^s) the normal (singular) part of ϕ , then $\phi(p_k) = 0$ implies $\phi^n(p_k) = 0$ for all k. Thus $\phi^n(I) = 0$ and $\phi = \phi^s$ is singular. Apply now Theorem 5 to finish the proof.

THEOREM 7. Let \mathcal{M} be an infinite-dimensional W^* algebra, $G \subset \operatorname{Aut} \mathcal{M}$ a countable amenable group. Then there is a sequence of σ -finite projections $\{q_n; n \geq 0\}$ such that $q_n \uparrow q_0 \sigma$ -strongly and $gq_0 = q_0$ for all g in G, and a positive w^* - w^* continuous isometry into $t^*: l^{\infty^*} \to \mathcal{M}^*$ such that

$$t^*\mathcal{F} \subset S^G \cap \mathcal{M}^{\perp}_* \cap P^0$$
, where $P = \{q_n; n \ge 1\} \cup \{I - q_0\}$.

PROOF. Choose $q_n
\uparrow q_0$ and $\psi_0 \in S^G \cap \mathcal{M}_*^{\perp}$ as in Lemma 4. Let K be any convex set of normal states such that $\psi_0 \in w^*$ cl K (the set S_N of all normal states is such). Let $P = \{q_n; n \ge 1\} \cup \{I - q_0\}$. Then

$$A = \{ w^* \operatorname{cl} K \} \cap \{ \phi \in \mathcal{M}^*; G^* \phi = \phi \} \cap P^0 \subset \mathcal{M}_*^{\perp} \quad \text{and} \quad \psi_0 \in A.$$

Since any $g \in Aut \mathcal{M}$ is ultraweakly continuous ([23] p. 135) $g^*\mathcal{M}_* \subset \mathcal{M}_*$ for all g, hence for each g there is some $g_1 : \mathcal{M}_* \to \mathcal{M}_*$ such that $g_1^* = g$. Thus a direct application of Theorem 5 with $\{g_n^{**}\}$ replaced by $\{(g_1 - I)^{**}; g \in G\}$ finishes the proof.

Since $\beta N \sim N$ is a w* perfect set, as is well known, we have

COROLLARY 8. The set $H = t^*(\beta N \sim N) \subset S^G \cap \mathcal{M}_*^{\perp} \cap P^0$ is a w^* compact perfect subset of cardinality 2^c , such that $\|\phi_1 - \phi_2\| = 2$ for any $\phi_1, \phi_2 \in H$ such that $\phi_1 \neq \phi_2$.

Theorem 7 and Corollary 8 improve substantially the following result of Ching Chou [1] p. 649:

COROLLARY (Ching Chou). Assume that G is a countable amenable group acting ergodically as measure preserving maps on a nonatomic probability space (X, \mathcal{B}, p) . Then there exists a positive w^*-w^* continuous isometry into $t^*: l^{\infty^*} \to L^{\infty}(X)^*$ such that $t^*\mathscr{F} \subset S^G$.

We note that the action of G on our W^* algebra need not be trace preserving (\mathcal{M} need not be abelian or admit any faithful trace at all) or ergodic, and \mathcal{M} may contain atoms. Moreover $t^*\mathcal{F}$ contains only singular elements ψ such that $\psi(q_n)=0$ if $n\geq 1$, $\psi(q_0)=1$. (Hence if $r_n=q_n+(I-q_0)$, $n\geq 1$ then r_n are projections such that $r_n\uparrow I$, σ strongly, and $\psi(r_n)=0$ for all $\psi\in t^*\mathcal{F}$, $n\geq 1$. This assertion is related to Theorem 1.4 (1) \Leftrightarrow (3) of Rosenblatt [17] p. 628.)

REMARK (1). The following is a result in K. Schmidt [21] p. 227.

THEOREM. Let G be a countable group and (X, \mathcal{B}, μ) be a standard nonatomic probability space TFAE: (1) No ergodic measure preserving action of G on (X, \mathcal{B}, μ) is strongly ergodic. (2) No ergodic measure preserving action of G on (X, \mathcal{B}, μ) has a unique G invariant state on $L^{\infty}(X, \mu)$. (3) G is amenable.

Our theorem implies that amenable countable groups have a much stronger

property than (2), namely: Every action (null set preserving but not necessarily measure preserving) of G on any measure space (X, \mathcal{B}, μ) such that $\mathcal{M} = L^{\infty}(X, \mu)$ is not finite dimensional satisfies card $S^G \cap \mathcal{M}_{*}^{\perp} = 2^c$. Furthermore, the abelian $\mathcal{M} = L^{\infty}(X)$ can be replaced by any W^* algebra with dim $\mathcal{M} = \infty$.

REMARK (2). Let \mathcal{M} be a finite W^* algebra with faithful normal trace τ such that $\tau(I) = 1$. For a fixed τ let $\|x\|_2 = \tau(x^*x)^{1/2}$ if $x \in \mathcal{M}$. Let $G \subset A$ ut \mathcal{M} preserve τ and extend the action of each $g \in G$ to the canonical Hilbert space $L^2(\mathcal{M}, \tau)$. M. Choda [4] defines the action of G on \mathcal{M} to be s-strongly ergodic if, whenever $\xi_n \in L^2(\mathcal{M}, \tau)$ are unit vectors such that $\|\xi_n - g\xi_n\|_2 \to 0$ for each g in G, it follows that $\|\xi_n - \tau(\xi_n)1\|_2 \to 0$. She proves in [4], among other results, that "The action of G on \mathcal{M} is s-strongly ergodic if and only if τ is the unique G invariant state on \mathcal{M} ."

One can hence call the action of G on an arbitrary W^* algebra \mathcal{M} to be s-strongly ergodic if it admits a unique G invariant state. Then one gets that the action of countable amenable groups on any W^* algebra \mathcal{M} is never s-strongly ergodic. In fact, moreover, dim $S^G \cap \mathcal{M}_{*}^{\perp} \geq 2^c$ (if dim $\mathcal{M} = \infty$).

For countable groups with property T (for ex. Sl(nZ), $n \ge 3$) the situation is strikingly different as the following result of K. Schmidt [21] and A. Connes and B. Weiss [5] shows: "A countable group G has property T, iff any measure preserving ergodic action on any standard probability space is strongly ergodic".

The main result of Ching Chou in [1] is

THEOREM. Let G be a countable group acting ergodically as measure preserving maps on the nonatomic probability space (X, \mathcal{B}, p) . If the set S^G of G invariant states on $\mathcal{M} = L^{\infty}(X, p)$ satisfies $\{p\} \subseteq S^G$, then there is a positive w^*-w^* continuous isometry into $t^*: l^{\infty^*} \to \mathcal{M}^*$ such that $t^*\mathcal{F} \subset S^G$. In particular, card $S^G \supseteq 2^c$.

We note that G is not necessarily amenable here and that \mathcal{M} is a finite W^* algebra ([16] p. 166). Furthermore, due to ergodicity, $\{p\}$ is the unique G invariant normal state on $\mathcal{M} = L^{\infty}(X)$. It is hence assumed above that there is some $\psi \in S^G$ which is not normal.

Ching Chou's result is thus substantially improved in

THEOREM 9. Let $G \subset \text{Aut } \mathcal{M}$ be any countable group acting on the σ -finite W^* algebra \mathcal{M} . Assume that there is some $\phi_0 \in S^G$ which is not normal. Then there is a sequence of projections $q_n \uparrow I$, σ -strongly, and a positive w^*-w^*

continuous isometry $t^*: l^{\infty^*} \to \mathcal{M}^*$ such that $t^*\mathcal{F} \subset S^G \cap \mathcal{M}_*^{\perp} \cap P^0$ where $P = \{q_n\}$.

REMARK. Ching Chou's proof in [1] p. 648 relies on J. Rosenblatt's Theorem A in which essential use is made of the fact that G preserves the finite measure p (see [17] p. 627). In our case $\mathcal M$ need not admit any faithful, finite (or σ -finite) trace at all and even if $\mathcal M$ admits one, it need not be preserved by G.

PROOF. Let Z_0 be the central projection in \mathcal{M}^{**} such that $\mathcal{M}_* = \mathcal{M}^*Z_0$ and $\mathcal{M}^{\perp}_* = \mathcal{M}^*(1-Z_0)$, see Takesaki [23] p. 126, and $\mathcal{M}^* = \mathcal{M}_* \oplus \mathcal{M}^{\perp}_*$ (an l^1 direct sum). Then $\eta_0 = (1-Z_0) \phi_0 \neq 0$ and $\eta_0 \in \mathcal{M}^{\perp}_*$ is positive (since ϕ_0 is not normal and Z_0 is central). But $g^*\eta_0 = \eta_0$ for all g in G. To show this one notes that, since $g \in \text{Aut } \mathcal{M}, g$ is ultraweakly continuous ([23] p. 135), hence $g^*\mathcal{M}_* \subset \mathcal{M}_*$. Also, if $\phi \in \mathcal{M}^{\perp}_*$ is positive, then $g^*\phi \in \mathcal{M}^{\perp}_*$. Since if $p \neq 0$ is a projection in \mathcal{M} then so is gp, and there is a projection $0 \neq p_1 \leq gp$ such that $\phi(p_1) = 0$ (see [23] p. 134, Theorem 3.8), hence $g^*\phi(g^{-1}p_1) = \phi(p_1) = 0$ and $0 \neq g^{-1}p_1 \leq p$ since g is an automorphism. Hence again by [23] p. 134, Theorem 3.8, $g^*\phi \in \mathcal{M}^{\perp}_*$. It follows that

$$\phi_0 = \phi_0 Z_0 + \phi_0 (I - Z_0) = g^* \phi_0 = g^* (\phi_0 Z_0) + g^* (\phi_0 (I - Z_0)).$$

Since $\mathcal{M}^* = \mathcal{M}_* \oplus \mathcal{M}_*^{\perp}$ is a direct sum, $g^*\eta_0 = g^*(\phi_0(1 - Z_0)) = \phi_0(1 - Z_0) = \eta_0$ for all g. Thus $\eta_0 \in \mathcal{M}_*^{\perp}$. It follows that $\psi_0 = \eta_0(I)^{-1}\eta_0 \in \mathcal{M}_*^{\perp} \cap S^G$. Now \mathcal{M} is σ -finite ([23] p. 78) hence, as done after Corollary 8, there is a sequence of projections $q_n \uparrow I$, σ -strongly, such that $\psi_0(q_n) = 0$ if $n \ge 1$. Let now $K = S_N$, the set of normal states on \mathcal{M} . Then

$$\psi_0 \in A = \{ w^* \operatorname{cl} K \} \cap \{ \psi \in \mathcal{M}^*; g^* \psi = \psi \text{ for } g \in G \} \cap P^0 \subset \mathcal{M}^1_*$$

by the same argument as at the end of Lemma 4. We apply now Theorem 5 and get that there is a w^*-w^* continuous positive into isometry $t^*: l^{\infty^*} \to \mathcal{M}^*$ such that $t^*\mathcal{F} \subset S^G \cap \mathcal{M}^{\perp}_* \cap P^0$.

COROLLARY 10. The set $H = t^*(\beta N \sim N) \subset S^G \cap \mathcal{M}_*^{\perp} \cap P^0$ is a w^* compact perfect set such that card $H = 2^c$ and $\|\phi_1 - \phi_2\| = 2$ if $\phi_1, \phi_2 \in H$ and $\phi_1 \neq \phi_2$.

REMARKS. What can one say about the cardinality of S^G in case G is an uncountable amenable group? In this regard the following result of Z. Yang [24] is of much interest:

THEOREM. Assuming the continuum hypothesis, there exists a locally finite (hence amenable) group G of cardinality c acting on a countable set X such that there exists a unique G invariant state on $\mathcal{M} = l^{\infty}(X)$.

Thus any attempt to generalize the theorems of this paper to uncountable amenable groups G cannot work.

REFERENCES

- 1. Ching Chou, Topological invariant means on the Von Neumann algebra VN(G), Trans. Am. Math. Soc. 273 (1982), 207–229.
- 2. Ching Chou, Ergodic group actions with nonunique invariant means, Proc. Am. Math. Soc. 100 (1987), 647-650.
- 3. M. Choda, Normality of invariant states under strongly ergodic actions, Math. Japonicae 27 (1982), 293-300.
- 4. M. Choda, Effect of inner amenability on strong ergodicity, Math. Japonicae 28 (1983), 109-115.
- 5. A. Connes and B. Weiss, *Property T and asymptotically invariant sequences*, Isr. J. Math. 37 (1980), 209-210.
- 6. J. Cuntz, On the continuity of seminorms on operator algebras, Math. Ann. 220 (1976), 171-183.
 - 7. M. M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509-544.
- 8. N. Ghoussoub, G. Godefroy, B. Maurey and W. Schachermeyer, Some topological and geometrical structures in Banach spaces, Memoirs Am. Math. Soc. No. 378 (1987).
- 9. E. E. Granirer, Exposed points of convex sets and weak sequential convergence, Memoirs Am. Math. Soc. No. 123 (1972).
- 10. E. E. Granirer, Properties of the set of topologically invariant means on P. Eymard's W*-algebra VN(G), Indag. Math. 36 (1974), 116-121.
- 11. E. E. Granirer, Geometric and topological properties of certain w*-compact convex sets which arise from the study of invariant means. Canad. J. Math. 37 (1985), 107-121.
- 12. E. E. Granirer, Geometric and topological properties of certain w*-compact convex subsets of double duals of Banach spaces which arise from the study of invariant means, Illinois J. Math. 30 (1986), 148-174.
- 13. E. E. Granirer, A strong containment property for discrete amenable groups of automorphisms on W*-algebra, Trans. Am. Math. Soc. 297 (1986), 753-761.
- 14. R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, Vol. I, Academic Press, New York, 1983.
- 15. V. Losert and H. Rindler, Almost invariant sets, Bull. London Math. Soc. 13 (1981), 145-148.
- 16. G. K. Pedersen, C*-algebras and their Automorphism Groups, Academic Press, New York, 1979.
- 17. J. Rosenblatt, Uniqueness of invariant means for measure preserving transformations, Trans. Am. Math. Soc. 265 (1981), 623-636.
- 18. J. Rosenblatt and M. Talagrand, *Different types of invariant means*, J. London Math. Soc. **24** (1981), 525–536.
- 19. E. Saab, Some characterisations of weak Radon-Nikodym sets, Proc. Am. Math. Soc. 86 (1982), 307-311.
- 20. Sakai, Weakly compact operators on operator algebras, Pacific J. Math. 14 (1964), 659-664.

- 21. K. Schmidt, Amenability property T strong ergodicity and invariant means for ergodic group actions, Ergodic Theory and Dynamical Systems 1 (1981), 223-236.
- 22. C. Stegall, The Radon-Nikodym property in conjugate Banach spaces II, Trans. Am. Math. Soc. 264 (1981), 507-519.
 - 23. M. Takesaki, Theory of Operator Algebras I, Springer-Verlag, Berlin-New York, 1979.
 - 24. Zhuocheng Yang, Action of amenable groups and uniqueness of invariant means, preprint.